Target tracking using Interactive Multiple Model for Wireless Sensor Network

نویسندگان

  • S. Vasuhi
  • Vijay Vaidehi
چکیده

Target tracking in a Wireless Sensor Network (WSN) environment is a challenging research problem. Interactive Multiple Model (IMM) is a popular scheme for accurate target tracking. The existing target tracking scheme used in WSN employs Kalman Filter (KF) which fails to track the target accurately due to non availability of target data at regular intervals and missing of packets. Though existing KF based tracking in WSN scheme detects the target, it fails to identify the target. To overcome these problems, this paper proposes a IMM based Target Tracking in WSN named ITTWSN that uses multiple models (velocity and acceleration) to handle both maneuvering and non maneuvering targets and multiple sensors to detect and identify the targets. The performance of the proposed ITTWSN is compared with the KF scheme and it is found that the accuracy of the proposed ITTWSN is better than the existing KF based approach. 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization

A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...

متن کامل

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Mathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks

In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...

متن کامل

Target Tracking Based on Virtual Grid in Wireless Sensor Networks

One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information Fusion

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2016